Метод симметричных составляющих — различия между версиями

Материал из Энциклопедия релейной защиты и автоматики
Перейти к: навигация, поиск
м
м
Строка 33: Строка 33:
 
|Расчётная величина||Двухфазное КЗ (ф.B-ф.С)||Однофазное КЗ (ф.А)||Двухфазное КЗ на землю
 
|Расчётная величина||Двухфазное КЗ (ф.B-ф.С)||Однофазное КЗ (ф.А)||Двухфазное КЗ на землю
 
|-
 
|-
|<math>I_кА1</math>||<math>\frac{E_{A\Sigma}}{j\left ( X_{1\Sigma} + X_{2\Sigma} \right )}</math>||<math></math>||<math></math>
+
|<math>I_{кА1}</math>||<math>\frac{E_{A\Sigma}}{j\left ( X_{1\Sigma} + X_{2\Sigma} \right )}</math>||<math></math>||<math></math>
 
|}
 
|}
  
  
 
[[Категория:Недописанные статьи]]
 
[[Категория:Недописанные статьи]]

Версия 14:10, 14 сентября 2015

Симметричные составляющие

Любая несимметричная система может быть представлена суммой трех симметричных.

$ \begin{cases} \bar A = \bar A_1+ \bar A_2+\bar A_0\\ \bar B = \bar B_1+ \bar B_2+\bar B_0\\ \bar C = \bar C_1+ \bar C_2+\bar C_0 \end{cases} $

$ \begin{cases} \bar A = \bar A_1+ \bar A_2+\bar A_0\\ \bar B = a^2\bar A_1+ a\bar A_2+\bar A_0\\ \bar C = a\bar A_1+ a^2\bar A_2+\bar A_0 \end{cases} $, где

$ a = e^{j\tfrac{2\pi}{3}} $

$ \bar A_1 = \tfrac{1}{3} (\bar A+a\bar B+a^2\bar C) $

$ \bar A_2 = \tfrac{1}{3} (\bar A+a^2\bar B+a\bar C) $

$ \bar A_0 = \tfrac{1}{3} (\bar A+\bar B+\bar C) $


Таблица расчётных выражений для вычисления токов, напряжений и других величин при основных видах КЗ

Расчётная величина Двухфазное КЗ (ф.B-ф.С) Однофазное КЗ (ф.А) Двухфазное КЗ на землю
$ I_{кА1} $ $ \frac{E_{A\Sigma}}{j\left ( X_{1\Sigma} + X_{2\Sigma} \right )} $