Подстанция глубокого ввода — различия между версиями

Материал из Энциклопедия релейной защиты и автоматики
Перейти к: навигация, поиск
м (Редактирование оформления и "ё")
Строка 1: Строка 1:
'''Подстанция глубокого ввода''', сокращенно ПГВ, - это подстанция, на которую подается напряжение от 35 до 220 кВ, обычно она выполнена с применением упрощенных схем коммутации на стороне первичного напряжения, и получает питание или от энергетической системы напрямую, или от центрального распределительного пункта на самом предприятии.
+
'''Подстанция глубокого ввода''', сокращённо ПГВ, - это подстанция, на которую подаётся напряжение от 35 до 220 кВ, обычно она выполнена с применением упрощенных схем коммутации на стороне первичного напряжения, и получает питание или от энергетической системы напрямую, или от центрального распределительного пункта на самом предприятии.
  
 
Предназначение ПГВ — питание группы установок конкретного предприятия или какого-то отдельного объекта на этом предприятии. Схемами с глубоким вводом называют схемы электроснабжения с подстанциями глубокого ввода.
 
Предназначение ПГВ — питание группы установок конкретного предприятия или какого-то отдельного объекта на этом предприятии. Схемами с глубоким вводом называют схемы электроснабжения с подстанциями глубокого ввода.
  
Подстанции глубоких вводов располагаются вблизи наиболее крупных энергоемких производств и корпусов с концентрированной нагрузкой, например: прокатные и электросталеплавильные цехи; сталепроволочные и крепежно-калибровочные блоки метизных заводов; обогатительные фабрики и ряд других производств.
+
Подстанции глубоких вводов располагаются вблизи наиболее крупных энергоёмких производств и корпусов с концентрированной нагрузкой, например: прокатные и электросталеплавильные цехи; сталепроволочные и крепёжно-калибровочные блоки метизных заводов; обогатительные фабрики и ряд других производств.
  
 
Глубокие вводы широко применяются в схемах внешнего и внутреннего электроснабжения промышленных предприятий и считаются наиболее прогрессивными схемами электроснабжения. Их применение позволяет:
 
Глубокие вводы широко применяются в схемах внешнего и внутреннего электроснабжения промышленных предприятий и считаются наиболее прогрессивными схемами электроснабжения. Их применение позволяет:
  
расположить подстанции глубокого ввода в крупных узлах потребления электроэнергии (электролизные установки, прокатные станы, азотно-кислородные станции и т. д.);
+
* расположить подстанции глубокого ввода в крупных узлах потребления электроэнергии (электролизные установки, прокатные станы, азотно-кислородные станции и т.д.);
исключить промежуточные РП, так как их функции выполняют РУ вторичного напряжения подстанций глубокого ввода;
+
* исключить промежуточные РП, так как их функции выполняют РУ вторичного напряжения подстанций глубокого ввода;
использовать упрощенные схемы первичной коммутации ПГВ;
+
* использовать упрощённые схемы первичной коммутации ПГВ;
резко сократить протяженность электрических сетей напряжением 10(6) кВ, а следовательно, уменьшить потери мощности, энергии, напряжения в этих сетях, протяженность кабельных эстакад, число используемой коммутационной и защитной аппаратуры;
+
* резко сократить протяжённость электрических сетей напряжением 10(6) кВ, а следовательно, уменьшить потери мощности, энергии, напряжения в этих сетях, протяжённость кабельных эстакад, число используемой коммутационной и защитной аппаратуры;
уменьшить емкостные токи в сетях 10(6) кВ, что позволяет во многих случаях обойтись без установок компенсации емкостных токов;
+
* уменьшить ёмкостные токи в сетях 10(6) кВ, что позволяет во многих случаях обойтись без установок компенсации ёмкостных токов;
осуществить питание характерных групп электроприемников с нелинейными, резкопеременными, ударными нагрузками отдельными линиями непосредственно от подстанций глубокого ввода, что позволяет значительно уменьшить влияние данных нагрузок на систему электроснабжения и повысить качество электрической энергии;
+
* осуществить питание характерных групп электроприёмников с нелинейными, резкопеременными, ударными нагрузками отдельными линиями непосредственно от подстанций глубокого ввода, что позволяет значительно уменьшить влияние данных нагрузок на систему электроснабжения и повысить качество электрической энергии;
повысить надежность электроснабжения и уменьшить капитальные затраты и эксплуатационные издержки на систему электроснабжения. Схемы глубоких вводов напряжением 110—220 кВ выполняются воздушными или кабельными линиями, схемы глубоких вводов 330 кВ и выше — воздушными линиями.
+
* повысить надёжность электроснабжения и уменьшить капитальные затраты и эксплуатационные издержки на систему электроснабжения.  
Применение воздушных линий целесообразно при невысокой плотности застройки промышленной площадки. В целях снижения отчуждаемой под воздушную линию площади допускается прохождение линий над всеми несгораемыми зданиями и сооружениями, за исключением взрывоопасных установок. При выборе высоты опор воздушной линии должна учитываться возможность прокладки под проводами воздушных линий трубопроводов, транспортных и других коммуникаций. В обоснованных случаях может оказаться целесообразным применение специальных опор для увеличения длины пролетов.
+
 
 +
Схемы глубоких вводов напряжением 110—220 кВ выполняются воздушными или кабельными линиями, схемы глубоких вводов 330 кВ и выше — воздушными линиями.
 +
Применение воздушных линий целесообразно при невысокой плотности застройки промышленной площадки. В целях снижения отчуждаемой под воздушную линию площади допускается прохождение линий над всеми несгораемыми зданиями и сооружениями, за исключением взрывоопасных установок. При выборе высоты опор воздушной линии должна учитываться возможность прокладки под проводами воздушных линий трубопроводов, транспортных и других коммуникаций. В обоснованных случаях может оказаться целесообразным применение специальных опор для увеличения длины пролётов.
 
Все большее применение в системах электроснабжения предприятий находят кабельные линии напряжением 110—220 кВ. Разработка новых конструкций кабелей и совершенствование технических решений по прокладке кабельных линий способствует их широкому применению.
 
Все большее применение в системах электроснабжения предприятий находят кабельные линии напряжением 110—220 кВ. Разработка новых конструкций кабелей и совершенствование технических решений по прокладке кабельных линий способствует их широкому применению.
Маслонаполненные кабельные линии низкого давления требуют повышенного внимания со стороны обслуживающего персонала, так как имеют маслосистему, а в отдельных случаях и систему охлаждения, которые считаются ненадежными звеньями кабельных линий. Прокладка данных линий осуществляется в лотках, земле, траншеях, каналах и ниже зоны промерзания, а также с устройством специальных колодцев для муфт. Прокладка маслонаполненных кабелей в тоннелях не рекомендуется из-за значительной стоимости.
+
Маслонаполненные кабельные линии низкого давления требуют повышенного внимания со стороны обслуживающего персонала, так как имеют маслосистему, а в отдельных случаях и систему охлаждения, которые считаются ненадёжными звеньями кабельных линий. Прокладка данных линий осуществляется в лотках, земле, траншеях, каналах и ниже зоны промерзания, а также с устройством специальных колодцев для муфт. Прокладка маслонаполненных кабелей в тоннелях не рекомендуется из-за значительной стоимости.
Кабельные линии с изоляцией из сшитого полиэтилена (СПЭ- изоляцией) имеют более высокие технико-экономические показатели по сравнению с маслонаполненными кабельными линиями. Это позволило рекомендовать их в качестве основных для применения в сетях 110—220 кВ промышленных предприятий при высокой плотности застройки предприятия. Прокладка кабелей с СПЭ-изоляцией осуществляется в открытых кабельных сооружениях (на технологических и кабельных эстакадах, кабельных галереях). Следует отметить, что передача электрической энергии по кабельным линиям с СПЭ-изоляцией в настоящее время обходится в 7—20 раз дороже, чем по воздушным линиям напряжением 110—220 кВ. При увеличении напряжения разница в стоимости увеличивается. Вместе с тем для прохождения воздушной линии требуется полоса, свободная от застройки и коммуникаций, шириной более 20 м для линий напряжением 110 кВ и более 30 м для линий напряжением 220 кВ, что в условиях промышленного предприятия не всегда допустимо. Применение кабельных линий для питания подстанций глубокого ввода позволяет выполнять распределительные устройства 110—220 кВ подстанций по схеме «линия—трансформатор» без коммутационных аппаратов.
+
Кабельные линии с изоляцией из сшитого полиэтилена (СПЭ- изоляцией) имеют более высокие технико-экономические показатели по сравнению с маслонаполненными кабельными линиями. Это позволило рекомендовать их в качестве основных для применения в сетях 110—220 кВ промышленных предприятий при высокой плотности застройки предприятия. Прокладка кабелей с СПЭ-изоляцией осуществляется в открытых кабельных сооружениях (на технологических и кабельных эстакадах, кабельных галереях). Следует отметить, что передача электрической энергии по кабельным линиям с СПЭ-изоляцией по состоянию на 2020 год обходится в 7—20 раз дороже, чем по воздушным линиям напряжением 110—220 кВ. При увеличении напряжения разница в стоимости увеличивается. Вместе с тем для прохождения воздушной линии требуется полоса, свободная от застройки и коммуникаций, шириной более 20 м для линий напряжением 110 кВ и более 30 м для линий напряжением 220 кВ, что в условиях промышленного предприятия не всегда допустимо. Применение кабельных линий для питания подстанций глубокого ввода позволяет выполнять распределительные устройства 110—220 кВ подстанций по схеме «линия—трансформатор» без коммутационных аппаратов.
 +
 
 
По мере освоения промышленностью производства токопроводов напряжением до 330 кВ с элегазовой изоляцией увеличивается их применение для схем глубоких вводов при высокой плотности застройки промышленной площадки и наличии агрессивной окружающей среды.
 
По мере освоения промышленностью производства токопроводов напряжением до 330 кВ с элегазовой изоляцией увеличивается их применение для схем глубоких вводов при высокой плотности застройки промышленной площадки и наличии агрессивной окружающей среды.
 
Радиальные схемы глубоких вводов 110—220 кВ позволяют использовать простейшие схемы первичной коммутации подстанций глубокого ввода — схемы «линия—трансформатор»: без коммутационных аппаратов (глухого присоединения) с разъединителем, предохранителем, выключателем.
 
Радиальные схемы глубоких вводов 110—220 кВ позволяют использовать простейшие схемы первичной коммутации подстанций глубокого ввода — схемы «линия—трансформатор»: без коммутационных аппаратов (глухого присоединения) с разъединителем, предохранителем, выключателем.
При магистральных схемах глубоких вводов отключение магистрали приводит к потере питания всех трансформаторов, подключенных к магистрали. Поэтому используются схемы, позволяющие отключать поврежденный трансформатор на самой подстанции и повторно включать магистраль устройством АПВ.
+
При магистральных схемах глубоких вводов отключение магистрали приводит к потере питания всех трансформаторов, подключенных к магистрали. Поэтому используются схемы, позволяющие отключать повреждённый трансформатор на самой подстанции и повторно включать магистраль устройством АПВ.
 
----
 
----
  
 
[http://electricalschool.info/elstipod/1746-vidy-transformatornykh-podstancijj.html Виды трансформаторных подстанций]
 
[http://electricalschool.info/elstipod/1746-vidy-transformatornykh-podstancijj.html Виды трансформаторных подстанций]
 
[https://forca.ru/spravka/spravka/podstancii-glubokogo-vvoda.html Подстанции глубокого ввода]
 
[https://forca.ru/spravka/spravka/podstancii-glubokogo-vvoda.html Подстанции глубокого ввода]

Версия 08:18, 30 мая 2020

Подстанция глубокого ввода, сокращённо ПГВ, - это подстанция, на которую подаётся напряжение от 35 до 220 кВ, обычно она выполнена с применением упрощенных схем коммутации на стороне первичного напряжения, и получает питание или от энергетической системы напрямую, или от центрального распределительного пункта на самом предприятии.

Предназначение ПГВ — питание группы установок конкретного предприятия или какого-то отдельного объекта на этом предприятии. Схемами с глубоким вводом называют схемы электроснабжения с подстанциями глубокого ввода.

Подстанции глубоких вводов располагаются вблизи наиболее крупных энергоёмких производств и корпусов с концентрированной нагрузкой, например: прокатные и электросталеплавильные цехи; сталепроволочные и крепёжно-калибровочные блоки метизных заводов; обогатительные фабрики и ряд других производств.

Глубокие вводы широко применяются в схемах внешнего и внутреннего электроснабжения промышленных предприятий и считаются наиболее прогрессивными схемами электроснабжения. Их применение позволяет:

  • расположить подстанции глубокого ввода в крупных узлах потребления электроэнергии (электролизные установки, прокатные станы, азотно-кислородные станции и т.д.);
  • исключить промежуточные РП, так как их функции выполняют РУ вторичного напряжения подстанций глубокого ввода;
  • использовать упрощённые схемы первичной коммутации ПГВ;
  • резко сократить протяжённость электрических сетей напряжением 10(6) кВ, а следовательно, уменьшить потери мощности, энергии, напряжения в этих сетях, протяжённость кабельных эстакад, число используемой коммутационной и защитной аппаратуры;
  • уменьшить ёмкостные токи в сетях 10(6) кВ, что позволяет во многих случаях обойтись без установок компенсации ёмкостных токов;
  • осуществить питание характерных групп электроприёмников с нелинейными, резкопеременными, ударными нагрузками отдельными линиями непосредственно от подстанций глубокого ввода, что позволяет значительно уменьшить влияние данных нагрузок на систему электроснабжения и повысить качество электрической энергии;
  • повысить надёжность электроснабжения и уменьшить капитальные затраты и эксплуатационные издержки на систему электроснабжения.

Схемы глубоких вводов напряжением 110—220 кВ выполняются воздушными или кабельными линиями, схемы глубоких вводов 330 кВ и выше — воздушными линиями. Применение воздушных линий целесообразно при невысокой плотности застройки промышленной площадки. В целях снижения отчуждаемой под воздушную линию площади допускается прохождение линий над всеми несгораемыми зданиями и сооружениями, за исключением взрывоопасных установок. При выборе высоты опор воздушной линии должна учитываться возможность прокладки под проводами воздушных линий трубопроводов, транспортных и других коммуникаций. В обоснованных случаях может оказаться целесообразным применение специальных опор для увеличения длины пролётов. Все большее применение в системах электроснабжения предприятий находят кабельные линии напряжением 110—220 кВ. Разработка новых конструкций кабелей и совершенствование технических решений по прокладке кабельных линий способствует их широкому применению. Маслонаполненные кабельные линии низкого давления требуют повышенного внимания со стороны обслуживающего персонала, так как имеют маслосистему, а в отдельных случаях и систему охлаждения, которые считаются ненадёжными звеньями кабельных линий. Прокладка данных линий осуществляется в лотках, земле, траншеях, каналах и ниже зоны промерзания, а также с устройством специальных колодцев для муфт. Прокладка маслонаполненных кабелей в тоннелях не рекомендуется из-за значительной стоимости. Кабельные линии с изоляцией из сшитого полиэтилена (СПЭ- изоляцией) имеют более высокие технико-экономические показатели по сравнению с маслонаполненными кабельными линиями. Это позволило рекомендовать их в качестве основных для применения в сетях 110—220 кВ промышленных предприятий при высокой плотности застройки предприятия. Прокладка кабелей с СПЭ-изоляцией осуществляется в открытых кабельных сооружениях (на технологических и кабельных эстакадах, кабельных галереях). Следует отметить, что передача электрической энергии по кабельным линиям с СПЭ-изоляцией по состоянию на 2020 год обходится в 7—20 раз дороже, чем по воздушным линиям напряжением 110—220 кВ. При увеличении напряжения разница в стоимости увеличивается. Вместе с тем для прохождения воздушной линии требуется полоса, свободная от застройки и коммуникаций, шириной более 20 м для линий напряжением 110 кВ и более 30 м для линий напряжением 220 кВ, что в условиях промышленного предприятия не всегда допустимо. Применение кабельных линий для питания подстанций глубокого ввода позволяет выполнять распределительные устройства 110—220 кВ подстанций по схеме «линия—трансформатор» без коммутационных аппаратов.

По мере освоения промышленностью производства токопроводов напряжением до 330 кВ с элегазовой изоляцией увеличивается их применение для схем глубоких вводов при высокой плотности застройки промышленной площадки и наличии агрессивной окружающей среды. Радиальные схемы глубоких вводов 110—220 кВ позволяют использовать простейшие схемы первичной коммутации подстанций глубокого ввода — схемы «линия—трансформатор»: без коммутационных аппаратов (глухого присоединения) с разъединителем, предохранителем, выключателем. При магистральных схемах глубоких вводов отключение магистрали приводит к потере питания всех трансформаторов, подключенных к магистрали. Поэтому используются схемы, позволяющие отключать повреждённый трансформатор на самой подстанции и повторно включать магистраль устройством АПВ.


Виды трансформаторных подстанций Подстанции глубокого ввода